Abstract

The use of ordinary Portland cement as the primary binder in concrete production resulted in the high carbon footprint of the concrete material which cause a great deal of environmental impacts over the years. The consumption of OPC is especially significant for high strength concrete, which require a very high cement content (more than 450 kg/m3). Hence, supplementary cementitious materials such as ground granulated blast furnace slag (GGBS) and pulverized fuel ash (PFA) were chosen as partial replacement materials of OPC for concrete production in the research due to their ease of availability from the steelmaking manufacturing sectors and coal-fired electricity power stations in the country. As the sustainability of concrete is also our main concern, the durability performance of flowable high performance concrete containing high volume of GGBS and PFA (50-80% replacement of OPC) has been studied in this research. Therefore, the durability properties of flowable high performance concrete had been assessed in term of air permeability, porosity, water absorption and capillary action. From the results of assessment, all ternary blended concrete mixes exhibited better durability performances than control OPC concrete at later ages due to formation of denser microstructure by pozzolanic reaction of GGBS and PFA. It is concluded that the mix proportion of flowable high performance concrete production with 60% replacement of OPC by GGBS and PFA has the optimum durability performances than OPC concrete.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.