Abstract

ABSTRACTSynthetic zirconolite (CaZrTi2O7) doped with rare earth elements (REEs) and Hf has been subjected to corrosion tests in a closed system at elevated temperature and pressure in fluids with various compositions. Together with previous studies, the results indicate only a very weak corrosion below 250°C at a pressure of 50 MPa. Above that temperature and up to 500°C zirconolite suffers from relatively rapid corrosion and, depending on the fluid composition, it may be covered by various secondary phases. Above 500°C in Na-rich fluids, zirconolite is replaced by perovskiteand calzirtite (nominally CaTiO3 and Ca2r5Ti2O16, respectively), but theREEs and Hf (acting as actinide analogues and/or neutron absorbers) are almost quantitatively incorporated into the secondary phases. The breakdown of zirconolite and its replacement by other phases in the laboratory tests are comparable to reactions observed in natural systems. Additional experiments with U-doped zirconolite revealed differences in the behavior of the used actinide analogues (Nd, Ce, Gd)and U during corrosion. The results of this study, together with observations on natural samples, strongly support the use of zirconolite-based ceramic waste forms for actinide-rich wastes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.