Abstract

Tunable adhesive superhydrophobic materials have attracted increasing research interest due to their applications in microdroplet manipulation, biological detection and microfluidic system. However, most of the artificial materials easily lose superhydrophobicity in harsh environments. The durability of superhydrophobic materials is very important to extend their lifetime in practical applications. In this paper, bioinspired durable superhydrophobicity with tunable adhesion on polytetrafluoroethylene surfaces is realized via a one-step femtosecond laser irradiation. On the laser-induced superhydrophobic surfaces, the sliding angle can be tuned from 1° to 90° (water droplet is pinned on the surface at any titled angles). The tunable water adhesion results from different contact states which change from the lotus state to the transition state and then to the composite state with increasing average distance of irradiation points. Water droplet quick localization and no-loss droplet transportation were achieved through designing surface adhesion. In addition, the resultant surfaces are so stable that they can maintain superhydrophobicity even after storing in harsh environments, without dramatical superhydrophobicity decay for a long time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call