Abstract
* The breakdown of plant resistance by pathogen populations is a limit to the genetic control of crop disease. Polygenic resistance is postulated as a durable alternative to defeated major resistance genes. Here, we tested this postulate in the pepper-Potato virus Y interaction. * The virus was selected for virulence towards monogenic and polygenic host resistance, using serial inoculations in laboratory and in natural epidemic conditions. The frequency of resistance breakdown and the genetic changes in the virus avirulence gene were analysed. * The monogenic resistance provided by the pvr2(3) gene was defeated at high frequency when introgressed in a susceptible genetic background whereas it was not when combined to partial resistance quantitative trait loci. The suppression of emergence of virulent mutants because of the genetic background resulted both from a differential selection effect and the necessity for the virus to generate multiple mutations. The virus adaptation to the polygenic resistance required a step-by-step selection with a primary selection for virulence towards the major gene, followed by selection for adaptation to the genetic background. * Polygenic resistance proved more durable than monogenic resistance, but breeding strategies giving priority to major resistance factors may jeopardize the progress in durability expected from polygenic resistance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.