Abstract
Ice accumulation on outdoor structures is a serious problem in cold climate regions of the world. To address this issue, several surface treatment methods have been developed for structures made of aluminum alloys. In this study, an Al2O3 porous oxide layer was formed by anodization using a phosphoric acid electrolyte. Subsequently, polytetrafluoroethylene (PTFE) was used to coat the porous surface. After PTFE impregnation, a nanostructured surface along with a low surface energy of PTFE resulted in significantly reduced ice adhesion strength. In fact, even after fifteen icing/deicing cycles, the PTFE-based coating remained highly hydrophobic with static contact angles higher than smooth Teflon® surface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.