Abstract
Magnesium phosphate cements (MPCs), also known as chemically bonded ceramics, represent a class of inorganic cements that have garnered considerable interest in recent years for their exceptional properties and diverse applications in the construction and engineering sectors. However, the development of these cements is relatively recent (they emerged at the beginning of the 20th century), so there are still certain aspects relating to their durability that need to be evaluated. The present work analyses the chemical durability of magnesium potassium phosphate cements (MKPCs) during 1 year of immersion in three leaching media: seawater, a Na2SO4 solution (4% by mass) and deionized water. For this, pastes of prismatic specimens of MKPC, prepared with different M/P ratio (2 and 3), were submitted to the different chemical attacks. At different ages, the changes on the mechanical strengths, microstructure (BSEM, MIP) and mineralogy (XRD, FTIR, TG/DTG) were evaluated. The results obtained indicate that, in general terms, MKPC systems show good behavior in the three media, with the more resistant system being the one prepared with a M/P molar ratio of 3.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.