Abstract
The combined effect of sustained loading and moist seawater-contaminated concrete environment on the durability performance of two types of glass fiber-reinforced polymer (GFRP) bars was investigated. A sustained load of 25% of the ultimate tensile strength was applied to concrete-encased GFRP bars immersed in tap water for up to 15 months at temperatures of 20, 40, and 60 °C. None of the loaded specimens conditioned at 20 °C were creep-ruptured during conditioning. In contrast, many bars were creep-ruptured during conditioning at the higher temperatures of 40 and 60 °C. At a conditioning temperature of 20 °C, Type I and II GFRP bars retained 84 and 70% of their original tensile strength after 15 months of conditioning under a sustained load. At the higher temperature of 60 °C, trivial tensile strength retentions of 15 and 12% were recorded for Type I and Type II GFRP bars, respectively, after 15 months of conditioning under a sustained load. A comparative analysis between results of loaded and unloaded specimens demonstrated the detrimental effect of the presence of a sustained load during conditioning on the tensile strength retention of GFRP bars. The detrimental effect of the sustained load was intensified at the higher temperatures. The accelerated aging test data along with Arrhenius concept were employed to develop a durability design model that can predict the tensile strength retention of both types of GFRP bars in moist seawater-contaminated concrete.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.