Abstract
The necessity for a protecting guard for the popular ceramic matrix composites (CMCs) is getting a lot of attention from engine manufacturers and aerospace companies. The CMC has a weight advantage over standard metallic materials and more performance benefits. However, these materials undergo degradation that typically includes coating interface oxidation as opposed to moisture induced matrix which is generally seen at a higher temperature. Additionally, other factors such as residual stresses, coating process related flaws, and casting conditions may influence the degradation of their mechanical properties. These durability considerations are being addressed by introducing highly specialized form of environmental barrier coating (EBC) that is being developed and explored in particular for high temperature applications greater than 1100°C. As a result, a novel computational simulation approach is presented to predict life for EBC/CMC specimen using the finite element method augmented with progressive failure analysis (PFA) that included durability, damage tracking, and material degradation model. The life assessment is carried out using both micromechanics and macromechanics properties. The macromechanics properties yielded a more conservative life for the CMC specimen as compared to that obtained from the micromechanics with fiber and matrix properties as input.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.