Abstract

In reinforced concrete structures constructed on the coastline of the hypersaline Arabian Gulf water, corrosion of reinforcing steel causes cracking, delamination and spalling of concrete, within a time span of a few years. The King Abdullah Civic Center (KACC), being constructed on a reclaimed land off the coastline in the Eastern region of Saudi Arabia, is a major complex with wharves, quay walls, and breakwater and commercial buildings. To ensure the durability of buildings in the harsh marine environment and to provide a minimum service life of 35 years, a concrete mix in which 70% of Portland cement is replaced by granulated ground blast furnace slag (GGBFS) was recommended based on durability modeling conducted using the software STADIUM®. Concrete with 70% GGBFS provides for the dual objective of achieving a green concrete and an enhanced service life of the building. Based on durability modelling it was concluded that corrosion inhibitor should be used preferably in the concrete. A detailed experimental program was conducted to assess the durability and strength properties of the 70% GGBFS concrete, with and without corrosion inhibitor. This paper presents the results of experimental investigations and durability modeling conducted for the project. A 70% GGBFS concrete mix without corrosion inhibitor was adopted for the raft foundation and subsequently for the entire building to make it a green concrete building.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call