Abstract
In this study the compressive strength and durability of soft clay soil stabilized with halloysite nanotubes are investigated. Halloysite nanotubes are novel 1D natural nanomaterials which are widely used in reinforcing polymer, pollution remediation, and as nanoreactors for biocatalyst. The wide use of halloysite nanotubes is due to their high aspect ratio, appropriate mechanical strength, high thermal stability, nature-friendly and cost-effectiveness. However, the use of halloysite nanotubes as a stabilizing agent for improving the durability of soil is not clear. In this research, halloysite nanotubes was used in the amounts of 2%, 5% and 10% by the weight of dried soil. Unconfined compressive strength, wet/dry cycles and freeze/thaw cycles tests were performed to evaluate the strength and durability of stabilized soft clay soil. Experimental results showed that halloysite nanotubes considerably improves the compressive strength and durability of soft clay soil. The optimum amount of halloysite nanotubes for soil stabilizing in terms of compressive strength and durability was 5%. The compressive strength of soft clay increased as much as 129% by applying 5% halloysite nanotubes. Also, the specimen containing 5% halloysite nanotubes showed the least strength loss after wet/dry and freeze/thaw cycles. The soil sample containing 5% halloysite nanotubes lost 20% of its initial compressive strength after 8 cycles of freezing and thawing, while the soil sample without any halloysite content lost 100% of its compressive strength after the same number of freezing and thawing. Based on the obtained results, the use of halloysite nanotubes in order to enhance the strength and durability of soft clay is strongly recommended.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.