Abstract
Fired clay brickwork in buildings is prone to cracks and deterioration upon exposure to long-time acidic contamination and water absorption, hence decreasing the bearing capacity of masonry walls. As its contribution toward resolving this challenge, this study assessed the durability and morphological characteristics of high-strength performance bricks produced from a mixture of PET waste (PW) and foundry sand (FS). The PET waste bricks (PWBs) were produced through different proportioning (PW: FS) of 20%, 30%, and 40% of the dry mass of FS. The PWBs produced were tested for durability and compressive and tensile strengths and compared to fired clay bricks to evaluate their load-bearing capacity under compression and tension. Furthermore, scanning electron microscopy (SEM) tests were employed to analyze the morphological structure of the bricks. The test results revealed that the PWBs recorded an appreciable strength of 1.5–2 times that of fired clay bricks, and lower water absorption whilst retaining their ultimate strengths after complete immersion in water and acidic concentrations. The morphology of PWB possessed greater intercluster bonds on the surface compared to clay bricks. The findings demonstrate a reasonable methodological approach toward the production of masonry bricks using a mixture of PET waste and spent foundry sands.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.