Abstract

This research assessed the long-term performance of direct methanol fuel cells. The experiment was performed at room temperature using 0.51 mol/L ∼0.651 mol/L methanol with a fuel consumption rate of 0.8 ± 0.1 cc/Wh at stack temperature of 60 °C–70 °C. DuPont Nafion115 proton exchange membrane was used as the base material of MEA (membrane electrode assembly), which is then examined via a series of processes that include IV curve test, humidity cycle test, load cycle test, and hydrogen penetration test. The study employs membrane modification and cell structure adjustment approaches to reduce the methanol crossover in the cathode and identify the cell performance effect of the carbon paper gas diffusion layer. The test results indicated an efficiency of 25% can be achieved with a three-piece MEA assembly. According to the durability test, the stack power-generation efficiency has maintained at 15%–25% level. With such efficiency, the stack voltage output has been able to stay above 7.8-V for over 5000 h. This result is in line with industry standard.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.