Abstract
Experimental methodologies for fatigue lifetime prediction are time-intensive and susceptible to environmental variables. Although the cohesive zone model is popular for predicting adhesive fatigue lifetime, entropy-based methods have also displayed potential. This study aims to (1) provide an understanding of the durability characteristics of carbon fiber-reinforced plastic (CFRP) adhesive joints by incorporating an entropy damage model within the context of the finite element method and (2) examine the effects of different adhesive layer thicknesses on single-lap shear models. As the thickness of the adhesive layer increases, damage variables initially increase and then decrease. These peak at 0.3 mm. This observation provides a crucial understanding of the stress behavior at the resin-CFRP interface and the fatigue mechanisms of the resin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.