Abstract

AbstractThe viability of using two waste materials, water treatment sludge (WTS) and fly ash (FA), for developing sustainable masonry units has been previously investigated in terms of strength but the important aspect of durability against wetting–drying (w–d) cycles has yet to be studied. A study on durability against w–d cycles, an important parameter for service life design of the sustainable masonry units, is investigated in this paper. The liquid alkaline activator (L) was a mixture of sodium silicate (Na2SiO3) and sodium hydroxide (NaOH), and a high calcium fly ash (FA) was used as a precursor. The results of cyclic w–d test indicate that the WTS–FA geopolymer manufactured with an optimum ingredient (L:FA=1.6, Na2SiO3:NaOH=90∶10) and at an optimum heat condition of 85°C for 72 h can be used as durable bearing masonry units; i.e., the compressive strength is greater than 12 MPa after 12 w–d cycles. For this optimum ingredient, the w–d cycle strength, qu(w−d) at heat temperatures between 65 and 95°C ...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call