Abstract

BackgroundADP-glucose pyrophosphorylase (AGPase), which catalyses a rate limiting step in starch synthesis, is a heterotetramer comprised of two identical large and two identical small subunits in plants. Although the large and small subunits are equally sensitive to activity-altering amino acid changes when expressed in a bacterial system, the overall rate of non-synonymous evolution is ~2.7-fold greater for the large subunit than for the small subunit. Herein, we examine the basis for their different rates of evolution, the number of duplications in both large and small subunit genes and document changes in the patterns of AGPase evolution over time.ResultsWe found that the first duplication in the AGPase large subunit family occurred early in the history of land plants, while the earliest small subunit duplication occurred after the divergence of monocots and eudicots. The large subunit also had a larger number of gene duplications than did the small subunit. The ancient duplications in the large subunit family raise concern about the saturation of synonymous substitutions, but estimates of the absolute rate of AGPase evolution were highly correlated with estimates of ω (the non-synonymous to synonymous rate ratio). Both subunits showed evidence for positive selection and relaxation of purifying selection after duplication, but these phenomena could not explain the different evolutionary rates of the two subunits. Instead, evolutionary constraints appear to be permanently relaxed for the large subunit relative to the small subunit. Both subunits exhibit branch-specific patterns of rate variation among sites.ConclusionThese analyses indicate that the higher evolutionary rate of the plant AGPase large subunit reflects permanent relaxation of constraints relative to the small subunit and they show that the large subunit genes have undergone more gene duplications than small subunit genes. Candidate sites potentially responsible for functional divergence within each of the AGPase subunits were investigated by examining branch-specific patterns of rate variation. We discuss the phenotypes of mutants that alter some candidate sites and strategies for examining candidate sites of presently unknown function.

Highlights

  • ADP-glucose pyrophosphorylase (AGPase), which catalyses a rate limiting step in starch synthesis, is a heterotetramer comprised of two identical large and two identical small subunits in plants

  • Patterns of AGPase gene duplication It is well known that genes can have three possible fates after duplication [23,24,25,26,27]: (1) nonfunctionalization, in which one duplicate is lost, (2) subfunctionalization, in which the functions of the original single-copy gene are partitioned between the duplicates, and (3) neofunctionalization, in which one duplicate gains a novel function

  • Inclusion of AGPase sequences from the moss Physcomitrella patens [29], which has 7 large subunit and 4 small subunit genes, placed a major constraint on the earliest divergence within the large subunit family since the moss sequences were intermixed with angiosperm sequences

Read more

Summary

Introduction

ADP-glucose pyrophosphorylase (AGPase), which catalyses a rate limiting step in starch synthesis, is a heterotetramer comprised of two identical large and two identical small subunits in plants. The large and small subunits are sensitive to activity-altering amino acid changes when expressed in a bacterial system, the overall rate of non-synonymous evolution is ~2.7-fold greater for the large subunit than for the small subunit. We examine the basis for their different rates of evolution, the number of duplications in both large and small subunit genes and document changes in the patterns of AGPase evolution over time

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call