Abstract

A cloned Neurospora crassa genomic sequence, selected as preferentially transcribed when acetate was the sole carbon source, was introduced in extra copies at ectopic loci by transformation. Sexual crossing of transformants yielded acetate nonutilizing mutants with methylation and restriction site changes within both the ectopic DNA and the normally located gene. Such changes are typical of the duplication-induced premeiotic disruption (the RIP effect) first described by Selker et al. (E. U. Selker, E. B. Cambareri, B. C. Jensen, and K. R. Haack, Cell 51:741-752, 1987). The mutants had the unusual phenotype of growth on ethanol but not on acetate as the carbon source. In a cross to the wild type of a mutant strain in which the original ectopic gene sequence had been removed by segregation, the acetate nonutilizing phenotype invariably segregated together with a RIP-induced EcoRI site at the normal locus. This mutant was transformed to the ability to use acetate by the cloned sequence. The locus of the mutation, designated acu-8, was mapped between trp-3 and un-15 on linkage group 2. The transcribed portion of the clone, identified by probing with cDNA, was sequenced, and a putative 525-codon open reading frame with two introns was identified. The codon usage was found to be strongly biased in a way typical of most Neurospora genes sequenced so far. The predicted amino acid sequence shows no significant resemblance to anything previously recorded. These results provide a first example of the use of the RIP effect to obtain a mutant phenotype for a gene previously known only as a transcribed wild-type DNA sequence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call