Abstract
In this work, we propose constructions that correct duplications of multiple consecutive symbols. These errors are known as tandem duplications, where a sequence of symbols is repeated; respectively as palindromic duplications, where a sequence is repeated in reversed order. We compare the redundancies of these constructions with code size upper bounds that are obtained from sphere packing arguments. Proving that an upper bound on the code cardinality for tandem deletions is also an upper bound for inserting tandem duplications, we derive the bounds based on this special tandem deletion error as this results in tighter bounds. Our upper bounds on the cardinality directly imply lower bounds on the redundancy which we compare with the redundancy of the best known construction correcting arbitrary burst insertions. Our results indicate that the correction of palindromic duplications requires more redundancy than the correction of tandem duplications and both significantly less than arbitrary burst insertions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.