Abstract

BackgroundVarious evolutionary models have been proposed to interpret the fate of paralogous duplicates, which provides substrates on which evolution selection could act. In particular, domestication, as a special selection, has played important role in crop cultivation with divergence of many genes controlling important agronomic traits. Recent studies have indicated that a pair of duplicate genes was often sub-functionalized from their ancestral functions held by the parental genes. We previously demonstrated that the rice cell-wall invertase (CWI) gene GIF1 that plays an important role in the grain-filling process was most likely subjected to domestication selection in the promoter region. Here, we report that GIF1 and another CWI gene OsCIN1 constitute a pair of duplicate genes with differentiated expression and function through independent selection.ResultsThrough synteny analysis, we show that GIF1 and another cell-wall invertase gene OsCIN1 were paralogues derived from a segmental duplication originated during genome duplication of grasses. Results based on analyses of population genetics and gene phylogenetic tree of 25 cultivars and 25 wild rice sequences demonstrated that OsCIN1 was also artificially selected during rice domestication with a fixed mutation in the coding region, in contrast to GIF1 that was selected in the promoter region. GIF1 and OsCIN1 have evolved into different expression patterns and probable different kinetics parameters of enzymatic activity with the latter displaying less enzymatic activity. Overexpression of GIF1 and OsCIN1 also resulted in different phenotypes, suggesting that OsCIN1 might regulate other unrecognized biological process.ConclusionHow gene duplication and divergence contribute to genetic novelty and morphological adaptation has been an interesting issue to geneticists and biologists. Our discovery that the duplicated pair of GIF1 and OsCIN1 has experienced sub-functionalization implies that selection could act independently on each duplicate towards different functional specificity, which provides a vivid example for evolution of genetic novelties in a model crop. Our results also further support the established hypothesis that gene duplication with sub-functionalization could be one solution for genetic adaptive conflict.

Highlights

  • Various evolutionary models have been proposed to interpret the fate of paralogous duplicates, which provides substrates on which evolution selection could act

  • A phylogenetic analysis of the known plant cell-wall invertase (CWI) genes and predicted CWI genes from the recently released maize and sorghum genomes showed that OsCIN1, located on chromosome 2, is highly similar to GIF1 located on chromosome 4 (Figure 1A)

  • The result indicated that GIF1 and OsCIN1 rose via duplication of a genomic block, which could be as large as 15 Mb

Read more

Summary

Introduction

Various evolutionary models have been proposed to interpret the fate of paralogous duplicates, which provides substrates on which evolution selection could act. Sequence variation plays an essential role in functional renovation of genes, the relationship between DNA variation and functional consequence has been enigmatic for the vast majority of genes in plant and animal kingdoms, despite an increasing number of studies have been reported. Crop species and their wild relatives with available genome information are becoming fascinating subjects for study of correlation between cryptic genetic variation and functional evolution, because they have undergone rapid diversification under intense artificial selection [11,12,13,14]. During the long-term cultivation and domestication, tremendous diversity in rice has been selected by human, adapting to various ecosystems and agricultural management, in addition to high yielding characteristics, such as grain number and weight [12,17]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call