Abstract

Using gapped circular DNA and homologous duplex DNA cut with restriction nucleases, we show that E. coli RecA protein promotes strand exchanges past double-strand breaks. The products of strand exchange are heteroduplex DNA molecules that contain nicks, which can be sealed by DNA ligase, thereby effecting the repair of double-strand breaks in vitro. These results show that RecA protein can promote pairing interactions between homologous DNA molecules at regions where both are duplex. Moreover, pairing leads to strand exchanges and the formation of heteroduplex DNA. In contrast, strand exchanges are unable to pass a double-strand break in the gapped substrate. This apparent paradox is discussed in terms of a model for RecA-DNA interactions in which we propose that each RecA monomer contains two nonequivalent DNA-binding sites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.