Abstract

Hepatitis E virus (HEV) represents an emerging risk in industrialized countries where the consumption of contaminated food plays a pivotal role. Quantitative real-time RT-PCR (RT-qPCR) is one of the most suitable methods for the detection and quantification of viruses in food. Nevertheless, quantification using RT-qPCR has limitations. Droplet digital PCR (ddPCR) provides the precise quantification of nucleic acids without the need for a standard curve and a reduction in the effect on virus quantification due to the presence of inhibitors. The objectives of the present work were (i) to develop a method for the absolute quantification of HEV in swine tissues based on ddPCR technology and provide internal process control for recovery assessment and (ii) to evaluate the performance of the method by analyzing a selection of naturally contaminated wild boar muscle samples previously tested using RT-qPCR. The method was optimized using a set of in vitro synthesized HEV RNA and quantified dsDNA. The limit of detection of the developed ddPCR assay was 0.34 genome copies/µL. The analysis of the wild boar samples confirmed the validity of the ddPCR assay. The duplex ddPCR method showed no reduction in efficiency compared to individual assays. The method developed in the present study could represent a sensitive assay for the detection and absolute quantification of HEV RNA in food samples with the advantage of presenting the co-amplification of internal process control.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.