Abstract
If M is an isoparametric hypersurface in a sphere S n with four distinct principal curvatures, then the principal curvatures κ1, . . . , κ4 can be ordered so that their multiplicities satisfy m 1 = m 2 and m 3 = m 4, and the cross-ratio r of the principal curvatures (the Lie curvature) equals −1. In this paper, we prove that if M is an irreducible connected proper Dupin hypersurface in R n (or S n ) with four distinct principal curvatures with multiplicities m 1 = m 2 ≥ 1 and m 3 = m 4 = 1, and constant Lie curvature r = −1, then M is equivalent by Lie sphere transformation to an isoparametric hypersurface in a sphere. This result remains true if the assumption of irreducibility is replaced by compactness and r is merely assumed to be constant.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.