Abstract

GI stromal tumors (GISTs) are commonly associated with somatic mutations in KIT and PDGFRA. However, a subset arises from mutations in NF1, most commonly associated with neurofibromatosis type 1. We define the anatomic distribution of NF1 alterations in GIST. We describe the demographic/clinicopathologic features of 177 patients from two institutions whose GISTs underwent next-generation sequencing of ≥315 cancer-related genes. We initially identified six (9.7%) of 62 GISTs with NF1 genomic alterations from the first cohort. Of these six patients, five (83.3%) had unifocal tumors at the duodenal-jejunal flexure (DJF). Two additional patients with DJF GISTs had non-NF1 (KIT and BRAF) genomic alterations. After excluding one DJF GIST with an NF1 single nucleotide polymorphism, four (57.1%) of seven sequenced DJF tumors demonstrated deleterious NF1 alterations, whereas only one (1.8%) of 55 sequenced non-DJF GISTs had a deleterious NF1 somatic mutation (P < .001). One patient with DJF GIST had a germline NF1 variant that was associated with incomplete penetrance of clinical neurofibromatosis type 1 features along with a somatic NF1 mutation. Of the five DJF GISTs with any NF1 alteration, three (60%) had KIT mutations, and three (60%) had Notch pathway mutations (NOTCH2, MAML2, CDC73). We validated these findings in a second cohort of 115 GISTs, where two (40%) of five unifocal NF1-mutated GISTs arose at the DJF, and one of these also had a Notch pathway mutation (EP300). Broad genomic profiling of adult GISTs has revealed that NF1 alterations are enriched in DJF GISTs. These tumors also may harbor concurrent activating KIT and/or inactivating Notch pathway mutations. In some cases, germline NF1 genetic testing may be appropriate for patients with DJF GISTs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call