Abstract
Recent studies show that deformations in quantum mechanics are inevitable. In this contribution, we consider a relativistic quantum mechanical differential equation in the presence of Dunkl operator-based deformation and we investigate solutions for two important problems in three-dimensional spatial space. To this end, after introducing the Dunkl quantum mechanics, we examine the Dunkl-Klein-Gordon oscillator solutions with the Cartesian and spherical coordinates. In both coordinate systems, we find that the differential equations are separable and their eigenfunctions can be given in terms of the associate Laguerre and Jacobi polynomials. We observe how the Dunkl formalism is affecting the eigenvalues as well as the eigenfunctions. As a second problem, we examine the Dunkl-Klein-Gordon equation with the Coulomb potential. We obtain the eigenvalue, their corresponding eigenfunctions, and the Dunkl-fine structure terms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.