Abstract

The mineralization rate of ruminant manure may influence the fertilization management of pastures. This study aimed to evaluate feces decomposition of heifers grazing signalgrass (Brachiaria decumbens Stapf.) fertilized or not with N, or intercropped with legumes in the dry forest region. Two experiments were conducted; the first one was a CRD that evaluated the evolution of CO2 from a mixture of soil and feces (10:1) during 22 days of incubation in a hermetically sealed bucket with a solution of NaOH 0.5 mol L-1. The second one was a RCBD that evaluated the in situ decomposition of feces in nylon bags in time periods 4, 8, 16, 32, 64, 128 and 256 days after incubation above ground. The single negative exponential mathematical model was adequate (P ≤ 0.0001) to quantify the CO2 evolution of the mixture of soil and feces, indicating that 78% of CO2 was released at the beginning of the incubation, especially for the feces collected in the signalgrass pastures intercropped with Gliricidia sepium (Jacq.) Kunth ex Walp. (gliricídia). After the first 5 days, CO2 evolution was more stable. Remaining biomass in the litterbag along decomposition fitted the single negative exponential model (P < 0.001). Greater relative decomposition rate (k) of bovine fecal biomass occurred for the N-fertilized signalgrass treatment (k = 0.0031 g g-1 day-1) and a lesser rate for the treatment intercropped with Mimosa caesalpiniifolia Benth. (sabiá) (k = 0.0018 g g-1 day-1). Nitrogen fertilization in signalgrass pasture favored the decomposition of bovine feces at the end of 256 days of incubation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call