Abstract

Dummy molecularly imprinted polymers (DMIPs) with high selectivity for amphetamine-type stimulants (ATSs) were synthesized using synephrine molecule as a dummy template. The polymers were irregularly massive with a specific surface area of 330 m2g−1. Adsorption experiments found that the imprinting factors for five ATSs (amphetamine, methamphetamine, 3,4-methylenedioxyamphetamine, 3,4-methylenedioxymethamphetamine, and 3,4-methylenedioxy-N-ethylamphetamine) were 2.3∼3.7. The DMIPs-agarose gel mixed matrix membranes (MMMs) were further prepared by incorporating DMIPs in the agarose matrix. MMMs were used to extract five ATSs from wastewater and urine samples. Extraction conditions such as membrane matrix, sample pH, dissolved organic matter content, extraction time, and elution reagent were optimized. Under optimal conditions, the developed MMMs-HPLC-MS/MS method exhibited low limits of detection (0.1∼3.0ng L−1), satisfactory recoveries (91.7∼100%), and good repeatability (RSD<7%, n=3). It was then successfully applied to ATSs analysis in wastewater and urine samples. Recoveries of ATSs in spiked wastewater and urine were 82.0∼98.4% and 82.3∼95.7%, respectively. Moreover, compared with other methods, the present method possessed the advantages of high quantitative ability, suitable for typical environmental conditions, and low application cost. The above results suggested that the developed MMMs-HPLC-MS/MS method could be used as a feasible strategy to extract and determine trace ATSs in wastewater and urine samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call