Abstract

AbstractGiven the environmental concerns surrounding fluoromaterials, the use of high‐cost perfluorinated sulfonic acids (PFSAs) in fuel cells and water electrolysis contradicts the pursuit of clean energy systems. Herein, we present a fluorine‐free dumbbell‐shaped block‐graft copolymer, derived from the cost‐effective triblock copolymer, poly(styrene‐b‐ethylene‐co‐butylene‐b‐styrene) (SEBS), for polymer electrolyte membranes (PEMs). This unique polymer shape led to the alignment of the hydrophobic‐hydrophilic domains along a preferred orientation, resulting in the construction of interconnected proton channels across the membrane. A bicontinuous network allowed efficient proton transport with reduced tortuosity, leading to an exceptional ionic conductivity (249 mS cm−1 at 80 °C and 90 % relative humidity (RH)), despite a low ion exchange capacity (IEC; 1.41). Furthermore, membrane electrode assembly (MEA) prepared with our membrane exhibited stable performance over a period of 150 h at 80 °C and 30 % RH. This study demonstrates a novel polymer structure design and highlights a promising outlook for hydrocarbon PEMs as alternatives to PFSAs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.