Abstract

The Dugdale plastic zone ahead of a penny-shaped crack in a piezoelectric material, subjected to electric and axisymmetric mechanical loadings, is evaluated analytically. Hankel transform is employed to reduce the mixed boundary-value problem of the penny-shaped crack to dual integral equations, which are solved exactly under the assumption of electrically permeable crack face conditions. A closed-form solution to the mixed boundary-value problem is obtained to predict the relationship between the length of the plastic zone and the applied loading. The stress distribution in and outside of the yield zone has been derived analytically, and the crack opening displacement has been investigated. The electric displacement has a constant value in the strip yield zone. The current Dugdale crack model leads to non-singular stress and electric fields near the crack front, and it is observed that the material properties affect the crack opening displacement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.