Abstract

Current high-performance computer systems used for scientific computing typically combine shared memory computational nodes in a distributed memory environment. Extracting high performance from these complex systems requires tailored approaches. Task-based parallel programming has been successful both in simplifying the programming and in exploiting the available hardware parallelism for shared memory systems. In this paper we focus on how to extend task-parallel programming to distributed memory systems. We use a hierarchical decomposition of tasks and data in order to accommodate the different levels of hardware. We test the proposed programming model on two different applications, a Cholesky factorization, and a solver for the Shallow Water Equations. We also compare the performance of our implementation with that of other frameworks for distributed task-parallel programming, and show that it is competitive.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.