Abstract

The ducting mechanism of acoustic‐gravity waves in a thermally stratified atmosphere with spherical geometry is investigated analytically. By introducing a reasonable atmospheric sound speed model, the Green's function of Navier‐Stokes equations is derived. The dispersion relation of ducted acoustic‐gravity wave modes is studied. Calculations reported here show various ducted modes, namely, the quasi‐surface modes, the fully ducted modes, and the imperfectly ducted mode. The ducting mechanism of the “leaky” gravity wave mode, usually referred to as mesospherically ducted mode, is reexamined. We find that the sudden rise of temperature at the lower thermosphere can itself contribute to the ducting of the lower atmospheric gravity waves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.