Abstract

The influence of forming temperature and strain rate on the ductility and strain-induced transformation behavior of retained austenite in a ferritic 0.4C-1.5Si-1.5Mn (wt pct) dual-phase steel containing fine retained austenite islands of about 15 vol pct has been investigated. Ex- cellent combinations of total elongations (TELs), about 48 pct, and tensile strength (TS), about 1000 MPa, were obtained at temperatures between 100 °C and 200 °C and at a strain rate of 2.8 X 10-4/s. Under these optimum forming conditions, the flow curves were characterized by intensive serrations and increased strain-hardening rate over a large strain range. The retained austenite islands were mechanically the most stable at temperatures between 100 °C and 200 °C, and the retained austenite stability appeared to be mainly controlled by strain-induced martensite and bainite transformations (SIMT and SIBT, respectively), with deformation twinning occur- ring in the retained austenite. The enhanced TEL and forming temperature dependence of TEL were primarily connected with both the strain-induced transformation behavior and retained aus- tenite stability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.