Abstract
This paper investigates the flexure of prestressed concrete beams strengthened with prestressed carbon fiber-reinforced polymer (CFRP) sheets, focusing on ductility and cracking behavior. Structural ductility of a beam strengthened with CFRP sheets is critical, considering the abrupt and brittle failure of CFRP sheets themselves. Cracking may also affect serviceability of a strengthened beam, and may be especially important for durability. Midscale prestressed concrete beams (L=3.6m) are constructed and a significant loss of prestress is simulated by reducing the reinforcement ratio to observe the strengthening effects. A nonlinear iterative analytical model, including tension of concrete, is developed and a nonlinear finite-element analysis is conducted to predict the flexural behavior of tested beams. The prestressed CFRP sheets result in less localized damage in the strengthened beam and the level of the prestress in the sheets significantly contributes to the ductility and cracking behavior of the strengthened beams. Consequently, the recommended level of prestress to the CFRP sheets is 20% of the ultimate design strain with adequate anchorages.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.