Abstract

Abstract Advanced structural ceramics, such as silicon nitride based materials, are of interest owing to their unique physical and mechanical properties. However the cost of grinding these ceramics, which is an integral part of their fabrication, is very high. Moreover, grinding can result in surface and sub-surface damage in the material and these defects can significantly reduce the strength and reliability of the finished components. Grinding damage is sensitive to grinding parameters. Two types of silicon nitride based ceramic materials were ground with Electrolytic In-Process Dressing (ELID) using different grit sized metal bonded diamond grinding wheels. With the application of ELID technology, mirror surface finish was realized with a #4000 mesh size wheel (average grain size = 4μm). Differences in ground surface topography caused by wheel grain size were analyzed using scanning electron microscopy (SEM) and atomic force microscopy (AFM). The SEM and AFM studies reveal that material was predominant...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.