Abstract

Publisher Summary An important failure mechanism in ductile metals and their alloys is by growth and coalescence of microscopic voids. In structural materials, the voids nucleate at inclusions and second-phase particles by decohesion of the particle–matrix interface or by particle cracking. Void growth is driven by plastic deformation of the surrounding matrix. Early micromechanical treatments of this phenomenon considered the growth of isolated voids. Later, constitutive equations for porous ductile solids were developed based on homogenization theory. Among these, the most widely known model was developed by Gurson for spherical and cylindrical voids.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.