Abstract

ABSTRACTIn this work, Fe70Ni10P13C7 and Fe60Ni20P13C7 bulk metallic glasses (BMGs) with high ductility are synthesised through the appropriate adjustment of flux conditions. Microstructure analyses indicate that the ductility of these two Fe-based BMGs is primarily determined by Fe–Ni and Ni–Ni metal–metal bonds, which enable the glasses to undergo a strain of more than 50% in the absence of fracture, as well as extensive bending ductility, similar to metals such as Fe and Ni. This study aims to find a solution to the brittleness problem in Fe-based BMGs, and the results have implications for understanding the deformation mechanism in Fe-based BMGs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.