Abstract

In the present study ductile crack initiation and propagation is investigated by means of a micro-mechanical model under small-scale yielding conditions. Voids are resolved discretely in the fracture process zone where steep gradients occur during the loading history and are taken into accounted by a homogenized porous plasticity law elsewhere. The size of the region of discrete voids is not set a priori but is determined consistently. The results show that effective crack growth occurs by plastic collapse, i.e. purely geometric softening of the intervoid ligaments without incorporating material separation. Due to this mechanism a limit load exists coinciding with the maximum fracture toughness. In addition, it turns out that the shielding due to the growth of voids around the crack plane has a considerable influence on the computed R-curves compared to models neglecting this effect. Depending on the void arrangement a diffuse softening zone or even crack branching is observed. A comparison with experimental data from literature indicates that plastic collapse and the formation of diffuse zones of void growth are realistic mechanisms of ductile crack propagation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.