Abstract
In this letter, we address the orienteering problem (OP) for curvature constrained vehicle. For a given set of target locations, each with associated reward, the OP stands to find a tour from a prescribed starting location to a given ending location such that it maximizes collected rewards while the tour length is within a given travel budget constraint. The addressed generalization of the Euclidean OP is called the Dubins Orienteering Problem (DOP) in which the reward collecting tour has to satisfy the limited turning radius of the Dubins vehicle. The DOP consists not only of selecting the most valuable targets and determination of the optimal sequence to visit them, but it also involves the determination of the vehicle's heading angle at each target location. The proposed solution is based on the Variable neighborhood search technique, and its feasibility is supported by an empirical evaluation in existing OP benchmarks. Moreover, an experimental verification in a real practical scenario further demonstrates the necessity of the proposed direct solution of the Dubins Orienteering Problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.