Abstract

We build a two-wavelength off-axis quasi-common-path digital holography for quantitative phase imaging (QPI) using polarization-multiplexing and flipping. The interference is performed by flipping the relative position of a sample and reference beam, and the dual-wavelength information is spatially multiplexed onto a monochromatic CCD camera simultaneously using polarization-multiplexing. Due to orthogonal interference fringes of two-wavelengths, the unwrapped information on the phase and thickness for the sample can be extracted from a single interferogram. Our setup requires no pinholes, gratings or dichroic mirror with straightforward alignment. Additionally, a division algorithm for dual-wavelength off-axis digital holography with the help of a specimen-free multiplexed interferogram is proposed to extract the phase of a specimen. We demonstrate the operation of the setup with step target and circular pillar.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call