Abstract
A dual-wavelength common-path digital holographic microscopy based on a single parallel glass plate is presented to achieve quantitative phase imaging, which combines the dual-wavelength technique with lateral shearing interferometry. Two illumination laser beams with different wavelengths (λ1=532 nm and λ2=632.8 nm) are reflected by the front and back surfaces of the parallel glass plate to create the lateral shear and form the digital hologram, and then the hologram is reconstructed to obtain the phase distribution with a synthetic wavelength Λ=3339.8 nm. The experimental configuration is very compact, with the advantages of vibration resistance and measurement range extension. The experimental results of the laser-ablated pit, groove, and staircase specimens show the feasibility of the proposed configuration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.