Abstract

Zero-shot learning (ZSL) is to build recognition models for previously unseen target classes which have no labeled data for training by transferring knowledge from some other related auxiliary source classes with abundant labeled samples to the target ones with class attributes as the bridge. The key is to learn a similarity based ranking function between samples and class labels using the labeled source classes so that the proper (unseen) class label for a test sample can be identified by the function. In order to learn the function, single-view ranking based loss is widely used which aims to rank the true label prior to the other labels for a training sample. However, we argue that the ranking can be performed from the other view, which aims to place the images belonging to a label before the images from the other classes. Motivated by it, we propose a novel DuAl-view RanKing (DARK) loss for zeroshot learning simultaneously ranking labels for an image by point-to-point metric and ranking images for a label by pointto-set metric, which is capable of better modeling the relationship between images and classes. In addition, we also notice that previous ZSL approaches mostly fail to well exploit the hardness of training samples, either using only very hard ones or using all samples indiscriminately. In this work, we also introduce a sample hardness assessment method to ZSL which assigns different weights to training samples based on their hardness, which leads to a more accurate and robust ZSL model. Experiments on benchmarks demonstrate that DARK outperforms the state-of-the-arts for (generalized) ZSL.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.