Abstract

In this paper, a dual-tree complex wavelet transform (DTCWT) based despeckling algorithm is proposed for synthetic aperture radar (SAR) images, considering the significant dependences of the wavelet coefficients across different scales. The DTCWT has the advantage of improved directional selectivity, approximate shift invariance, and perfect reconstruction over the discrete wavelet transform. The wavelet coefficients in each subband are modeled with a bivariate Cauchy probability density function (PDF) which takes into account the statistical dependence among the wavelet coefficients. Mellin transform of two dependent random variables is utilized to estimate the dispersion parameter of the bivariate Cauchy PDF from the noisy observations. This method is faster and effective when compared to that of the earlier techniques on numerical integration. Within this framework, we propose a new method for despeckling SAR images employing a maximum a posteriori estimator. Experimental results show that the proposed method based on bivariate Cauchy prior achieves better performance in terms of equivalent number of looks, peak signal-to-noise ratio, and Pratt's figure of merit.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call