Abstract

In this work, dual-template molecularly imprinted polymer surfaces imprinted on blue fluorescent Cr-based MOF (Cr-MOF) functionalized with yellow emissive carbon dots (Y-CDs) were prepared using l-ascorbic acid (AA) and uric acid (UA) as templates for simultaneous selective recognition of AA and UA. The as-prepared nanocomposite probe (Y-CDs/Cr-MOF@MIP) contains two recognition site cavities and emits a dual well-resolved fluorescence spectra when excited at 390 nm; blue emission (λem 450 nm) is due to Cr-MOF, and yellow emission (λem 560 nm) is due to Y-CDs. The yellow fluorescence emission of Y-CDs was quenched upon the addition of ascorbic acid, while Cr-MOF’s emission remained unaffected. In the same way, the blue fluorescence emission of the Cr-MOFs was quenched in the presence of uric acid, while the yellow emission remained constant. Both emissions were quenched in a sample containing both AA and UA. This can be exploited to design a dual-template biosensor to detect UA and AA simultaneously. The Y-CDs/Cr-MOF@MIP sensor displayed a dynamic linear response for AA in the range 25.0 µM – 425.0 µM with a detection limit of 1.30 µM, and for UA in the range 25.0 µM – 425.0 µM with a detection limit of 1.10 µM. The dual-target probe Y-CDs/Cr-MOF@MIP was highly selective and sensitive for the detection of UA and AA in human urine samples due to the selectivity of the two recognition sites.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.