Abstract

We present a dual-pump coherent anti-Stokes Raman scattering (CARS) instrument, which has been constructed for the probing of temperature fluctuations in turbulent pool fires of meter-scale. The measurements were performed at the Fire Laboratory for Accreditation of Models and Experiments (FLAME) facility at Sandia National Laboratories, which provides a canonical fire plume in quiescent wind conditions, with well-characterized boundary conditions and access for modern laser-diagnostic probes. The details of the dual-pump CARS experimental facility for the fire-science application are presented, and single-laser-shot CARS spectra containing information from in-fire N2, O2, H2, and CO2 are provided. Single-shot temperatures are obtained from spectral fitting of the Raman Q-branch signature of N2, from which histograms that estimate the pdf of the enthalpy-averaged temperature fluctuations at the center of the fire plume are presented. Results from two different sooting fire experiments reveal excellent test-to-test repeatability of the fire plume provided by FLAME, as well as the CARS-measured temperatures. The accuracy and precision of the CARS temperatures is assessed from measurements in furnace-heated air, where the temperature can be accurately determined by a thermocouple. At temperatures in excess of 500K, the furnace results show that the CARS measurements are accurate to within 2–3% and precise to within ±3–5% of the measured absolute temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.