Abstract

The properties of proton conductors determine the operating temperature range of fuel cells. Typically, phosphoric acid (PA) proton conductors exhibit excellent proton conductivity owing to their high proton dissociation and self-diffusion abilities. However, at low temperatures or high current densities, water-induced PA loss causes rapid degradation of cell performance. Maintaining efficient and stable proton conductivity within a flexible temperature range can significantly reduce the start-up temperature of PA-doped proton exchange membrane fuel cells. In this study, a dual-proton conductor composed of an organic phosphonic acid (ethylenediamine tetramethylene phosphonic acid, EDTMPA) and an inorganic PA is developed for proton exchange membranes. The proposed dual-proton conductor can operate within a flexible temperature range of 80-160 °C, benefiting from the strong interaction between EDTMPA and PA, and the enhanced proton dissociation. Fuel cells with the EDTMPA-PA dual-proton conductor showed excellent cell stability at 80 °C. In particular, under the high current density of 1.5 A cm-2 at 160 °C, the voltage decay rate of the fuel cell with the dual-proton conductor is one-thousandth of that of the fuel cell with PA-only proton conductor, indicating excellent stability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.