Abstract
Abstract Abrasive waterjet (AWJ) is widely used for machining of advanced (e.g. nickel-based) superalloys as it offers high material removal rates and low cutting temperatures. However, the inadequate surface integrity, e.g. large number of scratches and embedded particles in the machined surface, which would induce severe deteriorations of the materials functional performance, has been one of the greatest issues of the AWJ machining technique. To solve this problem, this research proposed a dual-process abrasive waterjet machining method, whereby two different functions of abrasive waterjet were employed: materials removal (first process) and surface modification (secondary process), hence, to improve the workpiece surface integrity. Two types of entrained particles, i.e. with sharp cutting edges (e.g. garnet) and smooth surfaces (e.g. stainless steel ball), that depending on their kinetic energy density can either cut or modify the workpiece surface respectively, are employed for these the two constitutive processes of the proposed dual-waterjet machining method. A critical standoff distance and inclination angle of the waterjet nozzle has been defined for the surface modification process thus, to eliminate the embedded particles and scratches left by the first cutting process while also introducing a surface strengthening effect. To support this approach, a mathematical model has been proposed for determining the surface modification parameters (e.g. jet feed speed and abrasive flow rate). In-depth analysis of the microstructural and metallurgical alternations of the machined workpiece surface and superficial layer have also been conducted to reveal the mechanisms responsible for the surface damage elimination and surface strengthening. Moreover, a four point bending fatigue test has been conducted to validate the mechanical performance, whereby a significant improvement of the fatigue life on the machined workpiece was achieved when compared with the case that single AWJ cutting method (91 %) and conventional machining (34 %) are employed. This proves that the proposed dual-processing AWJ machining method is of high efficiency to improve the functional performance of components on a single machine tool platform.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.