Abstract

Porous (Ta0.2Nb0.2Ti0.2Zr0.2Hf0.2)C high-entropy ceramics (HEC) with a dual-porosity structure were fabricated by pressureless sintering using a mixture powder of ceramic precursor and SiO2 microspheres. The carbothermal reduction in the ceramic precursor led to the formation of pores with sizes of 0.4-3 μm, while the addition of SiO2 microspheres caused the appearance of pores with sizes of 20-50 μm. The porous HECs exhibit competitive thermal insulation (4.12-1.11 W·m-1 k-1) and extraordinary compressive strength (133.1-41.9 MPa), which can be tailored by the porosity of the ceramics. The excellent properties are ascribed to the high-entropy effects and dual-porosity structures. The severe lattice distortions in the HECs lead to low intrinsic thermal conductivity and high compressive strength. The dual-porosity structure is efficient at phonon scattering and inhabiting crack propagations, which can further improve the thermal insulation and mechanical properties of the porous HECs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.