Abstract

The work presented here showed a comprehensive evaluation of dual-polarimetric RISAT-1 data for land use/land cover (LULC) classification. The textural images were extracted with the help of gray-level co-occurrence matrix approach. Analysis of inter-class separability using transformed divergence method was performed to recognize the potential textural images. The best combination of textural images was also identified on the basis of standard deviation of preferred textural images and correlation coefficients. The maximum likelihood classifier-based classification results for different scenarios were compared. Furthermore, various classification algorithms, maximum likelihood classifier (MLC), artificial neural network (ANN), random forest (RF) and support vector machine (SVM), were performed on the best identified scenario in order to observe the most suitable algorithm for LULC classification. The combination of radiometric and their related textural images was found improving the overall classification accuracy than individual datasets. The highest overall classification accuracy was found using SVM (88.97%) followed by RF (88.45%), ANN (83.65%) and MLC (78.18%).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call