Abstract

Reducing the side effects and improving the drug utilization are important work in anti-cancer drug delivery. In this paper, a novel dual-pH-sensitive drug delivery system was reported. Mesoporous silica nanoparticle (MSN) was applied to load anti-cancer drug doxorubicin hydrochloride (DOX) and was covered by mono-6-deoxy-6-EDA-β-cyclodextrine (β-CD-NH2) to block the pores through pH-sensitive boronate ester bond. And the carriers were then coated with methoxy poly(ethylene glycol) (mPEG) through another pH-sensitive benzoic imine bond. mPEG leaving studies, in vitro cellular uptake studies and the flow cytometry analysis, proved that carriers was “stealthy” at pH 7.4, but could be “activated” for cytophagy by cancer cells in weakly acidic tumor tissues (pH 6.5) due to the departure of mPEG. β-CD-NH2 leaving studies, the in vitro drug release studies and the in vitro cytotoxicity studies proved that boronate ester bond linking MSN and β-CD-NH2 was stable at both pH 7.4 and 6.5, but could be hydrolyzed intracellular to release DOX for cellular apoptosis due to the lower pH (5.0). In summary, the novel dual-pH-sensitive drug delivery system fabricated with a dynamic protection strategy should have great application potential in anti-cancer drug delivery fields.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call