Abstract
Most Bilingual Lexicon Induction (BLI) methods retrieve word translation pairs by finding the closest target word for a given source word based on cross-lingual word embeddings (WEs). However, we find that solely retrieving translation from the source-to-target perspective leads to some false positive translation pairs, which significantly harm the precision of BLI. To address this problem, we propose a novel and effective method to improve translation pair retrieval in cross-lingual WEs. Specifically, we apply a fusion of both source-side and target-side perspectives throughout the retrieval process to alleviate false positive word pairings that emanate from a single perspective. Moreover, in translation scenarios using Large Language Models (LLMs), we propose fusing the LLMs perspective with the BLI model perspective to enhance LLM’s translation capability. On benchmark datasets of BLI, our proposed method achieves competitive performance compared to existing state-of-the-art (SOTA) methods. It demonstrates effectiveness and robustness across six experimental languages, including similar language pairs and distant language pairs, under both supervised and unsupervised settings.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.