Abstract
A dual-parameter optical fiber sensor is proposed and demonstrated. It is based on an intermodal interferometer (IMI) with an inline embedded fiber Bragg grating (FBG). The IMI is formed by cascading a taper structure and a spherical-shaped structure through a segment of a single-mode fiber. Due to the different wavelength shifts of the IMI and FBG to temperature and liquid level, simultaneous measurement can be achieved. Experimental results indicate a good linear relation between the wavelength shift and external parameters (temperature and liquid level). The sensitivities of 0.066 nm/°C and −0.133 nm/mm are achieved experimentally for temperature and liquid level, respectively. The interesting properties of the sensor include good operation linearity, compact size, and high sensitivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.