Abstract

Column generation is one of the most successful approaches for solving large-scale linear programming problems. However, degeneracy difficulties and long-tail effects are known to occur as problems become larger. In recent years, several stabilization techniques of the dual variables have proven to be effective. We study the use of two types of dual-optimal inequalities to accelerate and stabilize the whole convergence process. Added to the dual formulation, these constraints are satisfied by all or a subset of the dual-optimal solutions. Therefore, the optimal objective function value of the augmented dual problem is identical to the original one. Adding constraints to the dual problem leads to adding columns to the primal problem, and feasibility of the solution may be lost. We propose two methods for recovering primal feasibility and optimality, depending on the type of inequalities that are used. Our computational experiments on the binary and the classical cutting-stock problems, and more specifically on the so-called triplet instances, show that the use of relevant dual information has a tremendous effect on the reduction of the number of column generation iterations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.